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SUMMARY:  An implicit finite element method is presented to analyze the 
thermoforming process of thermoplastic sheets reinforced with unidirectional continuous 
fibers. Unlike previous research works considering viscous or elastic behaviors for melted 
resin at the forming temperature, the reinforced laminates are regarded as an anisotropic 
viscoelastic material according to previous experimental studies. The transient reversible 
network theory is used to model the material behavior at the finite deformation. The 
kinematical constrains of material incompressibility and fiber inextensibility is considered 
in the finite element formulation. The present method is employed to analyze the picture-
frame test of thermoplastic specimen reinforced with unidirectional fibers at forming 
temperature and the results are compared with the analytical solutions. 
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INTRODUCTION 
 

Thermoforming process is an effective fabrication method to produce final shapes in the 
thermoplastic composite laminates. To successfully investigate the formability of 
composite laminates and optimize the processing parameters in the forming process, an 
accurate and effective model and computational method are essential. The thermoforming 
of thermoplastic composite laminates is performed at the melting temperature of 
thermoplastic resin, in which the fibers obtain enough flexibility to move easily relative to 
each other to match the die geometry. By applying a mechanical contact force or a 
hydrostatic pressure, the laminates are moved into the die cavity to form the desired 
geometry. After completing deformation, the melted resin is cooled and solidified before 
the load removal. The high volume fraction of oriented fibers embedded in melted resin 
defines a highly anisotropic behavior and kinematical constrains that it complicates the 
analysis of forming process. Experimental studies have shown that continuous fibers define 
inextensible orientations in the reinforced thermoplastic laminates during forming process 
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[1] and the thermoplastic reinforced sheets behave like an incompressible material at the 
forming temperature [2]. 
 
In the present research work, an implicit finite element method is presented to analyze the 
thermoforming process of thermoplastic sheets reinforced with unidirectional continuous 
fibers. Unlike previous research works considering viscous [3-5] or elastic [6-7] behaviors 
for melted resin at the forming temperature, the reinforced laminates are regarded as an 
anisotropic viscoelastic material according to previous experimental studies [8-9]. The 
transient reversible network theory [10] is used to model anisotropic material behavior at 
the finite deformation. The kinematical constrains due to material incompressibility and 
fiber inextensibility are considered in the finite element formulation. The present method is 
employed to analyze the picture-frame experiment of thermoplastic specimen reinforced 
with unidirectional fibers at forming temperature and the results are compared with the 
exact solutions. 
 
 

CONTINUUM MODEL 
 
To model the behavior of the thermoplastic laminates reinforced with unidirectional 
continuous fibers in the thermoforming process, the resin and fiber are macroscopically 
regarded as a single homogenized anisotropic material. A Lagrangian viewpoint is used to 
describe the material motion and the components of vectors and tensors are described in a 
fixed rectangular coordinate system. In the reference configuration of composite sheet, the 
position of a typical material particle is expressed with vector X (components Xi). In the 
deformed configuration at instance t, the particle moves to a position described with vector 
x(X,t) (components xi) corresponding to the displacement vector u(X,t) (components ui). The 
macroscopic state of the deformation is typically described using the deformation gradient, 
designated by F, whose components are given by 
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In the reference configuration, a unit vector a0 (components a0k) is attributed along the 
tangent to the fiber direction. The fibers are regarded as material lines [11], so that the 
deformation gradient tensor describes the transformation between the initial and current 
fiber direction as 

                                                              ( ) ( ) 0aFa tt =                                                         (2) 

According to the concept of transient reversible network [10], a viscoelastic behavior for 
the reinforced thermoplastic material is treated as a network of long chains connected to 
junctions. An active chain whose ends are connected to separate junction is analyzed as a 
hyperelastic model. Snapping of one end of an active link from a junction is tantamount to 
breaking the link. When a dangling chain captures one of the junctions in its neighborhood, 
a new adaptive link is created. 
 



  

The melted thermoplastic resin of composite material is regarded as a network involving M 
different kinds of links. The network consists of Ym(0,0) active links of mth kind at the initial 
instant t = 0. The number of initial links existing at time t is designated by Ym(t,0). In 
addition to, the number of links arisen within the interval [τ, τ + dτ] and existing at instant t 
can be given by (dYm(t,τ)/dτ)dτ. Hence, the total active links at instant t can be expressed as 
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In the present work, the composite materials are assumed to behave as a non aging 
viscoelastic media, in which the total number of active links remains unchanged and the 
rate of reformation is a constant value. In nonaging material, the number of broken links 
depends on the difference between the current instant and the instant of link formation. 
Hence, the functions of Ym(t,0) and dYm(t,0) ⁄dτ can be written as [12] 
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where Гm0 is the reformation rate of active links. To calculate the response of the network at 
a specific instant, the strain energy stored in all existing links should be added together, i.e. 
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YT(0,0) is the total of active links and Dm are constants defining the breakage and reformation 
functions. The strain energy stored in a hyperelastic materials reinforced with unidirectional 
continuous fibers is a scalar function of the right Cauchy-Green tensor (C = FTF) and 
vector a(τ) along the fibre direction at the instant of link formation. According to the 
invariant approach, the strain energy function can be represented as wm(I1,I2,I3,I4,I5), in which 
the invariants are given by 
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where A(τ) is a symmetric second order tensor with the components of Aij(τ) = ai(τ) aj(τ). The 
strain energy of a hyperelastic materials reinforced with unidirectional fibers can be given 
by 
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where βmi are mth link constants. In order to enforce the incompressibility and 
inextensibility constrains with negligible errors, the constants βm3 and βm4 must be large 
enough compare to βm1 and βm5, respectively. Assuming constants of active links are the 



  

same (βmi = β0i) and taking derivative of strain energy respect to the right Cauchy-Green 
tensor yield the second Piola-Kirchhoff stress tensor as follows 
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Where g(t) and G(t-τ) are functions defined by 
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FINITE ELEMENT FORMULATIONS 
 

A Lagrangian finite element formulation is developed to handle complicated boundaries 
and follow the material points in order to model the large deformation of the history 
dependent behavior of composite materials in the forming process. In the finite element 
analysis, the reference material geometry is subdivided into a suitable number of elements 
having the initial volume of Ω0e. The displacement vector of node I at instant t is denoted 
by uI(t) (components uIi). Using appropriate interpolation functions, denoted by NI(x), the 
displacement vectors are given by 

                                                      ( ) ( ) )(, tIIt N uu XX =                                                      (10) 
 
To discretize the equilibrium equation in the finite element analysis, a week form, often 
called the variational form, is needed. For this purpose, a test function using the nodal 
virtual displacement δuI is defined that satisfies all boundary conditions. The weak form is 
obtained by taking the product of the equilibrium equation with the test function and 
integrating over the element volume, which gives 
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T
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where int
If  and ext

If denote, respectively, the internal and external forces applied at node I 
defined by: 
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Where q0 is the traction force applied on the reference exterior surfaces denoted by Г0σ, ρ0 
is initial material density, b is the body force, and L0

I is a vector including the first order 
derivative of shape function respect to the reference material position given by 
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Since inertia force has negligible effects on the typical forming process, it was eliminated 
in the linear momentum equation. The finite element formulation depends nonlinearly on 
the nodal displacement vectors because the stress tensor is a nonlinear function of the 
current material geometry. In the present work, a Newton-Raphson method is used to 
calculate the deformed geometry. Considering Taylor expansion of Eq. (11) and dropping 
terms of higher order than linear displacement increment result in 

                                               ( ) ext
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where int
IJK  and ext

IJK  are the components of internal and external Jacobean matrices defined 
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The external Jacobean matrix is defined for the follower loads which their values and 
directions depend on the configuration of the body. Taking the nodal displacement 
derivative of internal force defined in Eq. (12) yields the internal Jacobean matrix 
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where geo
IJK and mat

IJK are the matrices and defined by 
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RESULTS AND DISCUSSION 
 

The validity of the developed finite element formulation was investigated through 
analyzing the picture-frame experiment which is used to study the rheological behavior of 
thermoplastic materials reinforced with unidirectional fibers or woven fabrics at the 
forming temperature. 

 

 
 

Fig. 1  Schematic of picture-frame experiment of 
unidirectional reinforced thermoplastic specimen. 
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A schematic of picture frame experiment is shown in Fig. 1, in which an initially square 
specimen attached to a four-bar linkage is subjected to a stretching force along a diagonal 
line that deforms it to a rhombus. The fibers are parallel to the sides of specimen and the 
fiber angle changes as the deformation process proceeds. 
 
An 8 node bi-quadratic quadrilateral element was used to analyze the picture-frame 
experiment. The reinforced sample with length L was deformed vertically by stretching the 
vertical diagonal up to 2L/15 with a constant velocity and the required force is calculated 
during deformation process. Since the lateral surfaces of the sheet are free from traction and 
the sheet has small thickness, a state of plane stress is considered. The material constant 
was set to βm5 /βm0 = 1 and βm4 /βm5 = 105. Table 1 shows the parameters considered to 
define the breakage function and reformation rate of active links in the viscoelastic model. 
 

Table 1  Parameters defining the number of active links in the viscoelastic model 
 
 
 
 
 
 
 
In order to define the appropriate increment number required to analyze the total 
deformation process, the calculated forced was compared with exact solution in Fig. 2. In 
order to calculate the internal nodal force and Jacobean matrix defined in the previous 
section, the integral form of the constitutive equation was evaluated by trapezoid 
approximation. Hence, a considerable error is observed for a single increment. As shown in 
Fig. 2, a reasonable accuracy can be obtained for more than ten increments. 

Гm0 Dm 
0.01 0.05 
0.1 0.25 
1 0.4 
10 0.3 



  

The finite element results are compared with exact solution in Fig. 3, in which the variation 
of forming force during deformation process are shown in different velocities. Although the 
specimens were stretched up to the same value in different velocities, the forming force 
decreases for slow deformation rate as observed in the experimental results [13]. Since 
there is enough time to snap more active links for a slow deformation rate, the calculated 
forming force decreases depending on the parameters used in the viscoelastic model. As 
shown in Fig. 3, there is a good agreement between the exact solution and the finite element 
results computed in ten increments. Unlike the theory of ideal fiber reinforced fluids, in 
which each composite laminate is modeled as a transversely isotropic Newtonian fluid [3], 
the calculated forming force depends nonlinearly on the rate of deformation in the present 
finite element formulation.  Hence, the present method can be used to model rate of 
deformation effects in the sheet forming process of the reinforced thermoplastic materials at 
the elevated temperature. 
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Fig. 2  Error of finite element results for different increment numbers. 

 

 
   Fig. 3  Comparison of exact solution and  
    finite element results calculating picture  
  frame force for different deformation rates. 
  

 

Fig. 4  Relaxation force in the 
picture frame test. 



  

In the picture frame experiment, the force required to maintain a specific deformation is 
also measured to investigation the stress relaxation in the composite sample. In the 
reinforced viscous model considered in the previous research works, the calculated forming 
force drops to a zero value as soon as the deformation stops. The finite element formulation 
of viscoelastic model used in the present works yields a convenient method to analyze the 
stress relaxation phenomenon. Fig. 4 shows the history of required force to produced and 
maintain a prescribe deformation in the picture-frame experiment. The diagonal stretch of 
2L/15 is applied at the two different velocities of 2 mm/s and 0.2 mm/s and it was held for a 
sufficiently long time. As soon as the deformation stops, the force relaxes according to rate 
of breakage of active link in the viscoelastic model. Therefore, the relaxation force 
measured in the picture frame experiment can be used to determine the parameters defined 
the number of active chain considered in the transient reversible theory. 
 
 

CONCLUSIONS 
 

The present finite element formulations provide an effective procedure to analyze the large 
deformation of the highly anisotropic behavior and kinematical constrains defined in 
thermoplastic laminates reinforced with unidirectional continuous fibers at forming 
temperature. The viscoelastic model developed base on the reversible network theory 
provides a convenient method to consider the history of deformation in the material 
response. The present finite element method of viscoelastic model provides a convenient 
procedure to model the rate of deformation effects as well as the stress relaxation 
phenomenon observed in the sheet forming process of the reinforced thermoplastic 
materials at the elevated temperature. The finite element analysis shows that the picture-
frame experiments can be used to determine the parameters of breakage and reformation 
function of the active links considered in the viscoelastic model. 
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